Periplasmic Binding Proteins in Thermophiles: Characterization and Potential Application of an Arginine-Binding Protein from Thermotoga maritima: A Brief Thermo-Story

نویسندگان

  • Alessio Ausili
  • Maria Staiano
  • Jonathan Dattelbaum
  • Antonio Varriale
  • Alessandro Capo
  • Sabato D'Auria
چکیده

Arginine-binding protein from the extremophile Thermotoga maritima is a 27.7 kDa protein possessing the typical two-domain structure of the periplasmic binding proteins family. The protein is characterized by a very high specificity and affinity to bind to arginine, also at high temperatures. Due to its features, this protein could be taken into account as a potential candidate for the design of a biosensor for arginine. It is important to investigate the stability of proteins when they are used for biotechnological applications. In this article, we review the structural and functional features of an arginine-binding protein from the extremophile Thermotoga maritima with a particular eye on its potential biotechnological applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amino acid transport in thermophiles: characterization of an arginine-binding protein in Thermotoga maritima.

Members of the periplasmic binding protein superfamily are involved in the selective passage of ligands through bacterial cell membranes. The hyperthermophilic eubacterium Thermotoga maritima was found to encode a highly stable and specific periplasmic arginine-binding protein (TM0593). Following signal sequence removal and overexpression in Escherichia coli, TM0593 was purified by thermoprecip...

متن کامل

Amino acid transport in thermophiles: characterization of an arginine-binding protein in Thermotoga maritima. 2. Molecular organization and structural stability.

ABC transport systems provide selective passage of metabolites across cell membranes and typically require the presence of a soluble binding protein with high specificity to a specific ligand. In addition to their primary role in nutrient gathering, the binding proteins associated with bacterial transport systems have been studied for their potential to serve as design scaffolds for the develop...

متن کامل

Structural analysis of semi-specific oligosaccharide recognition by a cellulose-binding protein of thermotoga maritima reveals adaptations for functional diversification of the oligopeptide periplasmic binding protein fold.

Periplasmic binding proteins (PBPs) constitute a protein superfamily that binds a wide variety of ligands. In prokaryotes, PBPs function as receptors for ATP-binding cassette or tripartite ATP-independent transporters and chemotaxis systems. In many instances, PBPs bind their cognate ligands with exquisite specificity, distinguishing, for example, between sugar epimers or structurally similar a...

متن کامل

Crystallization and preliminary X-ray crystallographic analysis of ligand-free and arginine-bound forms of Thermotoga maritima arginine-binding protein.

The arginine-binding protein from Thermotoga maritima (TmArgBP) is an arginine-binding component of the ATP-binding cassette (ABC) transport system in this hyperthermophilic bacterium. This protein is endowed with an extraordinary stability towards thermal and chemical denaturation. Its structural characterization may provide useful insights for the clarification of structure-stability relation...

متن کامل

A Loose Domain Swapping Organization Confers a Remarkable Stability to the Dimeric Structure of the Arginine Binding Protein from Thermotoga maritima

The arginine binding protein from Thermatoga maritima (TmArgBP), a substrate binding protein (SBP) involved in the ABC system of solute transport, presents a number of remarkable properties. These include an extraordinary stability to temperature and chemical denaturants and the tendency to form multimeric structures, an uncommon feature among SBPs involved in solute transport. Here we report a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013